Math 4210 Assignment 3

(1) Prot-call
parity.
(2) say we have 3 options with
same type:
use the convexity
regording skerikujuestion 2

Option Type	Strike	Maturity	Option Price at time $t=0$
Put	90	2	6
Call	110	1	11
Put	110	2	14

${ }^{2}{ }_{\text {Lily }}$ has a 15 years home mortgage. She needs to pay $\$ 12000$ at the end of each quarter (i.e. every 3 months) for the next 15 years. The interest on the Plan 1 and Plan 2 loan is compounded quarterly with annual nominal rate 2%.
(3) If $r=0$, the $D\left(T=T_{1}\right) \leqslant P\left(T=T_{2}\right.$ pith annual nominal rate 3% compounded monthly. What is her new monthly payment?
Notice: For both loans, the payments are made at the end of each period, ie. Notice: For both loans, the payments are
there is no payment at the initial time 0.

$$
T_{1} \in T_{2}
$$

Question 1
We observe the prices (at time $t=0$) of the following European call/put

convex.

Question $3 \quad P V_{1}=\frac{4 \times 15}{\sum_{i=1}} \frac{(12000}{\left(1+\frac{28}{8}\right)^{i}}=P V_{2}=\sum_{i=1}^{30 \times 12} \frac{\cosh h \text { flow }}{\left(1+\frac{3 \%}{12}\right)^{i}}$

1. Apply Ito formula on $f(t, x)=t x$ to prove that

$$
\begin{aligned}
& t B_{t}=\int_{0}^{t} s d B_{s}+\int_{0}^{t} B_{s} d s \mid \Rightarrow \cosh \operatorname{Cow} \approx r \psi \psi 1.4 L \\
& \text { exult that } \\
& \int_{0}^{t} B_{s} d s=\int_{0}^{t}(t-s) d B_{s}
\end{aligned}
$$

3. Compute

$$
\mathbb{E}\left[\int_{0}^{t} B_{s} d s\right] \quad \text { and } \quad \operatorname{Var}\left[\int_{0}^{t} B_{s} d s\right]
$$

(1) $I+o$'s formula.
(2) It's Isometry. Expectation of I 1 t's integral.

Q3. 1. $f(t, x)=t x . \quad f \in C^{1,2}([0, T] \times \mathbb{R})$
Then $d f\left(t, B_{t}\right)=\theta\left(t B_{t}\right)$

$$
=d t \cdot B_{t}+t \cdot d B \quad \text { (produd rule) }
$$

Then we integrate: $\begin{gathered}f\left(f, B_{t}\right)-f\left(0, B_{0}\right)=\int_{0}^{t} B_{s} d s+\int_{0}^{t} b d B_{s} . \\ A B_{+}\end{gathered}$

$$
\Rightarrow A B_{t}=\int_{0}^{t} B_{s} d s+\int_{0}^{t} s d B_{s}
$$

2. It suffices fo notice that $t B_{t}=t \cdot \int_{0}^{t} i d B_{s}$

So we have: $t \cdot \int_{0}^{t} \cdot d B_{s}=\int_{0}^{t} B_{s} d s+\int_{0}^{t} s d B_{s}$

$$
\begin{aligned}
\Rightarrow \int_{0}^{t} B_{s} d s & =\int_{0}^{t} t d B_{s}-\int_{0}^{t} s d B_{s} \\
& =\int_{0}^{t}(t-s) d B_{s}
\end{aligned}
$$

3. We need to compute $\mathbb{E}\left[\int_{0}^{t} B_{s} d s\right], \operatorname{Var}\left[\int_{0}^{t} B_{s} d s\right]$

Sine $\int_{0}^{t} B_{s} d s=\frac{\int_{0}^{t}(t-s) d B_{s}}{\text { Ito integral }}$

$$
\text { so } \begin{aligned}
\mathbb{E}\left[\int_{0}^{t}(t-s) d B_{s}\right]=0 & , \mathbb{E}\left[\left(\int_{0}^{t}(t-s) d B_{s}\right)^{2}\right] \\
& =\mathbb{E}\left[\int_{0}^{t}(t-s)^{2} \cdot d s\right]\left(1+0^{\prime}\right. \text { Isometry) } \\
& =\int_{0}^{t}(t-s)^{2} d s . \\
& =\int_{0}^{1}\left(t^{2}-2 s t+s^{2}\right) d s
\end{aligned}
$$

$$
\begin{aligned}
&=t^{3} / 3 \\
& \Rightarrow \operatorname{Var}\left(\int_{0}^{t} b_{s} d s\right)=\mathbb{E}\left[\left(\int_{0}^{t} B_{s} d s\right)^{2}\right]-\mathbb{E}\left[\int_{0}^{t} B_{s} d s\right]^{2} \\
&=t^{3} / 3
\end{aligned}
$$

We consider a continuous time market, where the interest rate $r \geq 0$, and self-fiaancip θ is al oo callal the risky asset $S=\left(S_{t}\right)_{0 \leq t \leq T}$ follows the Black-Scholes model with initial value prot folic. equivalent mating abe measure.

$$
S_{t}=S_{0} \exp \left(\left(\mu-\sigma^{2} / 2\right) t+\sigma B_{t}\right)
$$

(2). It'I's formula.

A is equivalent to a) A self-financing portfolio is given by (x, ϕ), where x represents the initial wealth of the portfolio, and ϕ_{t} represents the number of risky asset in the Black. Scholes portfolio at time t. Let $\left(\Pi_{t}^{x, \phi}\right)_{t \in[0, T]}$ be the wealth process of the portfolio 3 Black-Scholes Under Q-, discomitell $\begin{aligned} & \text { portfolio at time } t \text {. Let }\left(\Pi_{t}\right)_{t \in[0, T]} \text { write down the dynamic of } \Pi^{x, \phi} \text { in form of }\end{aligned}$ (\mathbb{P}, θ) financial derivatives $d \Pi_{t}^{x, \phi}=\alpha_{t} d t+\underline{\beta} d B_{t}$, for some (to be founded) process (α, β). are mantingules
b) There exists a unique risky-neutral probability \mathbb{Q}, together with a Brownan motion $B^{\mathbb{Q}}$ under the probability measure \mathbb{Q}. Please give the expression of the process S_{t} as a function of $\left(t, B_{t}^{\mathbb{Q}}\right)$.
\tilde{S}_{t} is 0 -mantingele
c) We first consider an option with payoff $g\left(S_{T}\right)=S_{T}^{2}$ at maturity T. $\tilde{\pi}_{t} \cdots \cdot$ - Compute the value $V_{0}:=\frac{\mathbb{E}^{\mathbb{Q}}\left[e^{-r T} S_{T}^{2}\right]}{(1) a \quad V(f, x)=\mathbb{E}^{\otimes}\left[e^{-r(1-\phi)} S_{T}^{L} \mid S_{7}-x_{-}\right]}$

$$
e^{-r T} g\left(S_{T}\right) \cdots
$$

$$
\begin{aligned}
& \text { Let } v(t, x):=x^{2} \exp \left(\left(r+\sigma^{2}\right)(T-t)\right), \text { compute } \partial_{t} v, \partial_{x} v \text { and } \partial_{x x}^{2} v, \\
& \quad \text { and then check that } v \text { satisfies the equation }
\end{aligned}
$$ and then check that v satisfies the equation

- If cue bane martingale $\partial_{\partial v(t, x)+r x \partial_{x} v(t, x)+\frac{1}{2} \sigma^{2} x^{2} \partial_{x x}^{v} v(t, x)-r v(t, x)=0, \quad v(T, x)=x^{2}}$ Ma.
- Let $\tilde{S}_{t}:=e^{-r t} S_{t}$ and $\tilde{g}\left(S_{t}\right):=e^{-r t} g\left(S_{t}\right)$ for all $t \geq 0$. Notice that both S_{t} and \tilde{S}_{t} are functions of (t, B_{t}), apply the Ito formula on $e^{-r t} v\left(t, S_{t}\right)$ to deduce that

$$
\tilde{g}\left(S_{T}\right)=V_{0}+\int_{0}^{T} \phi_{t} d \tilde{S}_{t} \text {, where } \phi_{t}:=\partial_{x} v\left(t, S_{t}\right) \text {. }
$$

then ${ }^{M}$ Mt hes no drift term.

$$
\begin{aligned}
d \pi_{t} & =\left(\pi_{t}-\phi_{t} s_{t}\right) r d t+\phi_{t} d S_{t} \\
& =\left(\pi_{t}-\phi_{t} s_{t}\right) r d t+\phi_{t}\left(\mu s_{t} d t+\sigma s_{t} d B_{t}\right) \\
& =\left(\left(\pi+-\phi_{t} s_{t}\right) r+\phi_{t} \mu S_{t}\right) d t+\sigma \phi_{t} s_{t} d B_{t}
\end{aligned}
$$

(b). Under probability manse $\mathbb{Q}, S_{t}=S_{0} \exp \left(\left(r-\sigma^{2} / 2\right) t+\sigma B_{t}^{Q}\right)$
(c). 1
$V_{0}=\mathbb{E}^{\theta}\left[e^{-r T} S_{T}^{2}\right]$ (just the discounted payoff under Q)

$$
\begin{aligned}
& =e^{-r^{T}} \mathbb{E}^{\Theta}\left[S_{0}^{2} \exp \left(2\left(r-\sigma^{2} / 2\right) \cdot T+2 \sigma B_{T}^{\theta}\right]\right. \\
& =e^{-r T+2 r T-\sigma^{2} T} \mathbb{E}^{\Theta}\left[e^{2 \sigma B_{T}^{\theta}}\right]
\end{aligned}
$$

(Moment-Genelating function)

$$
\begin{aligned}
& =e^{r T-\sigma^{2} T} \cdot e^{\frac{1}{2} \cdot(2 \sigma)^{2} \cdot T} \\
V_{0} & =e^{r T+\sigma^{2} T}
\end{aligned}
$$

$V\left(0, S_{0}\right)=S_{0}^{2} \exp \left(\left(r+\sigma^{2}\right) \tau\right)=V_{0}$

- Let $v(t, x):=x^{2} \exp \left(\left(r+\sigma^{2}\right)(T-t)\right)$, compute $\partial_{t} v, \partial_{x} v$ and $\partial_{x x}^{2} v$, and then check that v satisfies the equation

$$
\begin{aligned}
& \partial_{t} v(t, x)+r x \partial_{x} v(t, x)+\frac{1}{2} \sigma^{2} x^{2} \partial_{x x}^{2} v(t, x)-r v(t, x)=0, \quad v(T, x)=x^{2} . \\
& \partial \& V(t, x)=-\left(r+r^{2}\right) x^{2} \exp \left(\left(r+r^{2}\right)(T-x)\right) \\
& =-\left(r+\sigma^{2}\right) V(t, x) \\
& \partial_{x} V(t, x)=2 x \exp \left(\left(r+r^{2}\right)(T-t)\right) \\
& =\frac{2}{x} \vee(t, x) \\
& \partial_{x x}^{2} V(t, x)=2 \exp \left(\left(r+\sigma^{2}\right)(T \cdot A)\right) \\
& =\frac{2}{x^{2}} V(t, x) \\
& \partial_{t} v(t, x)+r x \partial_{x} v(t, x)+\frac{1}{2} \sigma^{2} x^{2} \partial_{x}^{2} x \vee(t, x) \\
& =\left(-(y+\sqrt{2})+r \cdot x \cdot \frac{2}{x}+\frac{1}{2} \cdot y^{2} \cdot x^{2} \cdot \frac{2}{x^{2}}\right) v(t, x) \\
& =+r \vee(f, x)
\end{aligned}
$$

3. - Let $\tilde{S}_{t}:=e^{-r t} S_{t}$ and $\tilde{g}\left(S_{t}\right):=e^{-r t} g\left(S_{t}\right)$ for all $t \geq 0$. Notice that both S_{t} and \tilde{S}_{t} are functions of $\left(t, B_{t}\right)$, apply the Ito formula on $e^{-r t} v\left(t, S_{t}\right)$ to deduce that

$$
\tilde{g}\left(S_{T}\right)=V_{0}+\int_{0}^{T} \phi_{t} d \tilde{S}_{t}, \quad \text { where } \phi_{t}:=\partial_{x} v\left(t, S_{t}\right)
$$

Deduce that V_{0} is the (no-arbitrage) price of the option $g\left(S_{T}\right)=S_{T}^{2}$.

$$
\begin{aligned}
& d\left(e^{-r t} V\left(t, s_{t}\right)\right)=-r e^{-r t} V\left(t, s_{t}\right) d t+e^{-r t} d v\left(t, s_{t}\right) \\
& \begin{aligned}
& \prime \prime \\
& d V \\
&\left.\hline t, s_{t}\right)=\partial_{t} V\left(t, s_{+}\right) d t+\partial_{x} V\left(t, s_{t}\right) d s_{t}+\frac{1}{2} \partial_{x x}^{2} V\left(t, s_{t}\right) d\left[s s_{t}^{\prime}\right. \\
&=\partial_{t} V\left(t, s_{t}\right) d t+\partial_{x} V\left(t, s_{t}\right) d s_{t}+\frac{1}{2} \sigma^{2} s_{t}^{2} V\left(t, s_{t}\right) d t
\end{aligned}
\end{aligned}
$$

Then. $d\left(e^{-r t} V\left(t, S_{t}\right)\right)=-r e^{-r t} V\left(t, S_{t}\right) d t \quad d S_{t}=\widetilde{r}+d t+\sigma S_{t} d B_{1}$

$$
\begin{aligned}
& \quad+e^{-r t}\left(\partial_{t} V() d t+\partial_{x} v() d S_{t}+\frac{1}{2} \sigma^{2} S_{t}^{2} V() d t\right) \\
& =e^{-r t}\left(-r V+\partial_{t} V+\frac{\left.\partial x V \cdot r S_{t}+\frac{1}{2} \sigma^{2} S_{t}^{2} V\right) d t}{}\right.
\end{aligned}
$$

$$
+e^{-r t} \partial_{x} V \cdot \sigma S_{+} d B_{t}
$$

$$
=e^{-r t} \partial_{x} V \cdot \sigma S_{t} d B_{t}
$$

Notice then $d \tilde{S}_{l}=d\left(e^{-r t} S_{t}\right)=e^{-r t}+S_{t} d B_{t}$
Thus: $d\left(e^{-r t} V\left(t \cdot S_{t}\right)\right)=2 \cdot S_{t} \exp \left(\left(r+\sigma^{2}\right)(T-t)\right) d \tilde{S}_{A}$.

$$
\begin{aligned}
& \Rightarrow \frac{e^{-r T} V\left(T, S_{T}\right)-V\left(0, S_{0}\right)=\int_{0}^{T} \partial_{x} V\left(t, S_{t}\right) d \widetilde{S}_{t}}{\Rightarrow \tilde{g}\left(S_{T}\right)=\widehat{V}_{0}+\int_{0}^{T} \partial_{x} V\left(t, S_{t}\right) d \widetilde{S_{t}}}
\end{aligned}
$$

π is self finuming, $d \tilde{\pi}_{h}^{x_{i} t}=d\left(e^{-r} \pi_{t}\right)=\phi_{t} d \tilde{s}_{t}$

$$
\Rightarrow d \tilde{g}\left(s_{T}\right)=x_{x} V\left(t, s_{t}\right) d \widetilde{s_{A}}
$$

Q1. Define $P_{t}(x):=P(T=t, k=x)$, similar for call. we have $P_{2}(90)=6 . \quad P_{2}(110)=14$

$$
C_{1}(100)=11
$$

(1) By put - call parity:

$$
C_{1}(100)+S_{0}=P_{1}(100)+\frac{e^{-r \cdot 1}}{\frac{11}{11}} \cdot \frac{100}{k}
$$

$$
\Rightarrow P_{1}(100)=C_{1}(100)-{\left.\underset{\substack{11 \\ 100}}{S_{0}}+100=\$ 11 \text { rat initial time }\right), ~(10)}^{100}
$$

If we long a $P_{1}(100)$
(2). By the convexity:

We should have

$$
P_{2}(90)+P_{2}(110) \geqslant 2 \cdot P_{2}(100) .
$$

(3). Recall: $P_{2}(100) \geqslant P_{1}(100)$

So we Rave:

$$
\begin{aligned}
P_{2}(90)+P_{2}(110) & \geqslant 2 \cdot P_{2}(100) \\
& \geqslant 2 \cdot P_{1}(100)
\end{aligned}
$$

However. $P_{2}(90)+P_{2}(110)=20,2 \cdot P_{1}(100)=2 \cdot C_{1}(100)$ $=22$.
But in reality: $P_{2}(90)+P_{2}(110)=20<22=2 \cdot P_{1}(100)$ So cither $P_{2}(90)+P_{2}(10)$ is lower then its actual value
or $2 P_{1}(100)$ is higher then its actual value.
Construe the portfolio: Cong $P_{2}(90), P_{2}(110)$.
we short $2 \cdot \operatorname{Pr}(100)$
We shout $\left[2-\left(C_{1}(100)-S_{0}+(00)\right]\right.$

$$
\begin{aligned}
\pi(f=0) & =6+14-2(11-100+100) \\
& =-2 \\
& \leq 0
\end{aligned}
$$

(1) $\left.\Pi(t=0)<0, \mathbb{P} \mathbb{R}^{2}(t=T) \geq 0\right]=1, \mathbb{P}[\pi(t=T)>0]>0$.
(2) $\quad(=)$

$$
\left.\begin{array}{rl}
\pi(t=1) & =\frac{P_{2}\left(9_{0} \text { at time } 1\right)+P_{2}(110, \text { at time } 1)}{} \\
& -2\left[C_{1}(100, \text { at time } 1)-S_{1}+100\right] \\
& \geqslant P_{1}\left(9_{0}, \text { at time } 1\right)+P_{1}(110, \text { atzime } 1) \\
& -2\left[\left(S_{1}-100\right)+-s_{1}+100\right] \\
& =\left(90-S_{1}\right)_{t}+\left(110-S_{1}\right)_{+}-2\left(S_{1}-100\right)_{+}+2\left(S_{1}-100\right) \\
0, & S_{1}>110 . \\
S_{1}-90, & 100<S_{1} \leqslant 110 \\
10-s_{1}, & \rho_{0}<S_{1} \leq 100 \\
0, & S_{1} \leq 90
\end{array}\right]
$$

S. $\mathbb{P}[\pi(t=1) \geqslant 0]=1 . \mathbb{P}[\pi(t=1)>0]>0$.
$\Rightarrow \pi$ is the arbitrage strategy

Midterm exam
Q3. Consider an option with maturity $T \geq 0$, with payoff:

$$
g(x)= \begin{cases}x & \text { if } x \leq k_{1} \\ \frac{k_{1}}{k_{2}-k_{1}}\left(k_{2}-x\right) & \text { if } \quad k_{1}<x \leqslant k_{2} \\ x-k_{2} & \text { if } \quad x>k_{2} .\end{cases}
$$

compute the option price $\mathbb{E}\left[e^{-r T} g\left(s_{T}\right)\right]$

$$
\begin{aligned}
\mathbb{E}^{\theta}\left[g\left(S_{T}\right)\right]=\mathbb{E}^{\theta}\left[\frac{\left[S_{T} \mathbb{1}_{S_{T} \leqslant k_{1}}+\frac{k_{1}}{k_{2}-k_{1}}\left(k_{2}-S_{T}\right) \mathbb{1}_{k_{1}<S_{T} \leq k_{2}}\right.}{}\right. \\
+\frac{\left.\left(S_{T}-k_{2}\right) \mathbb{1}_{S_{T}>k_{2}}\right]}{0}
\end{aligned}
$$

$e^{-r}(1)=e^{r^{r}} \mathbb{E}^{\theta}\left[\left(S_{T}-k\right)_{+}\right]=$call option price at time 0 .

$$
\begin{aligned}
& =S_{0} \Phi\left(d_{1}\left(k_{L}\right)\right)-e^{-r \top} \Phi\left(d_{2}\left(k_{2}\right)\right) \\
& \text { where } d_{1}(k)=\frac{\log \left(s_{0} / k\right)+\left(r+\frac{1}{2} \sigma^{2}\right) T}{\sigma \sqrt{T}}, d_{2}(k)=\frac{\log (5 / k)+\left(r-\frac{1}{2} \sigma^{2}\right) T}{\sigma \sqrt{T}}
\end{aligned}
$$

$$
\begin{aligned}
& e^{-r^{\top}} K \Phi\left(-d_{2}\left(K_{1}\right)\right)-\left(S_{\sin }\left(-d_{1}\left(K_{1}\right)\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { (all: so } \Phi\left(d_{1}\right)-e^{-r t} k \Phi\left(d_{2}\right) \\
& \mathbb{E}\left[e^{-r t} s_{T} \mathbb{1}_{s_{T} \geqslant k}\right] \mathbb{E}\left[e^{-r} k \mathbb{1}_{s_{T}, 2 k}\right] \\
& \text { put: } e^{-r T} K \Phi\left(-d_{2}\right)-s_{0} \Phi\left(-d_{1}\right) \\
& \mathbb{E}\left[\left(k_{2}-s_{T}\right) \mathbb{1}_{k_{1}<s_{T} \leq k_{2}}\right] \\
& =k_{L} \mathbb{E}^{\theta}\left[\mathbb{1} k_{1}<s_{T} \leqslant k_{L}\right]-\mathbb{E}^{\theta}\left[s_{T} \mathbb{1}_{k_{1}<s_{T} \leqslant k_{2}}\right] \\
& =\frac{k_{2} \otimes\left[k_{1}<S_{T} \leqslant k_{2}\right]}{\theta}-\left(\mathbb{E}^{\theta}\left[S_{T}\left(\mathbb{I}_{S_{T} \leqslant K_{2}}-\mathbb{I}_{S_{T} \leqslant k_{1}}\right)\right]\right)
\end{aligned}
$$

$$
\begin{aligned}
& \Phi\left(-d_{2}\left(k_{2}\right)\right) \Phi\left(-d_{2}\left(k_{1}\right)\right) \quad \Phi\left(-d_{1}\left(k_{2}\right)\right) \Phi\left(-d_{1}\left(k_{1}\right)\right)
\end{aligned}
$$

